Publication: CRISPR-CasΦ from huge phages is a hypercompact genome editor.
CRISPR-CasΦ from huge phages is a hypercompact genome editor.
Pausch P , Al-Shayeb B , Bisom-Rapp E , Tsuchida CA , Li Z , Cress BF , Knott GJ , Jacobsen SE , Banfield JF , Doudna JA
PII: 369/6501/333;
PUBMED: 32675376;
PMC: PMC8207990;
MID: NIHMS1702779;
DOI: 10.1126/science.abb1400;
ABSTRACT: CRISPR-Cas systems are found widely in prokaryotes, where they provide adaptive immunity against virus infection and plasmid transformation. We describe a minimal functional CRISPR-Cas system, comprising a single ~70-kilodalton protein, CasΦ, and a CRISPR array, encoded exclusively in the genomes of huge bacteriophages. CasΦ uses a single active site for both CRISPR RNA (crRNA) processing and crRNA-guided DNA cutting to target foreign nucleic acids. This hypercompact system is active in vitro and in human and plant cells with expanded target recognition capabilities relative to other CRISPR-Cas proteins. Useful for genome editing and DNA detection but with a molecular weight half that of Cas9 and Cas12a genome-editing enzymes, CasΦ offers advantages for cellular delivery that expand the genome editing toolbox.
ABSTRACT: CRISPR-Cas systems are found widely in prokaryotes, where they provide adaptive immunity against virus infection and plasmid transformation. We describe a minimal functional CRISPR-Cas system, comprising a single ~70-kilodalton protein, CasΦ, and a CRISPR array, encoded exclusively in the genomes of huge bacteriophages. CasΦ uses a single active site for both CRISPR RNA (crRNA) processing and crRNA-guided DNA cutting to target foreign nucleic acids. This hypercompact system is active in vitro and in human and plant cells with expanded target recognition capabilities relative to other CRISPR-Cas proteins. Useful for genome editing and DNA detection but with a molecular weight half that of Cas9 and Cas12a genome-editing enzymes, CasΦ offers advantages for cellular delivery that expand the genome editing toolbox.