Contact SCGE




SCGE Consortium Home   |  About SCGE Toolkit   |  Contact Us   |  Citing the Toolkit   |  License  

Submissions Details

SCGE ID:1074 - Submission Date: 2022-07-29 
Experiment Name Type Description
Testing different ratios of Lipofectamine-RNPs after 24 hours for determination of positive control

In Vitro Liver-on-a-chip was used to examine the cellular uptake of CRISPR/Cas9 encapsulated nanoparticles provided from the Gong Lab at the University of Wisconsin-Madison. The Gong lab conducted free radical polymerization of the monomer coating with (PEG)-acrylate to ensure that the RNP-NC be stable and able to conjugate different ligands. Two liver-targeted ligands were provided from the Gong Lab, RNP-NC attached to tri(GalNAc) and RNP-NC containing cell penetrating peptide (TAT). The tri(GalNAc) is known to enhance RNP-NC target to hepatocytes, whereas TAT will enhance target and uptake of RNP-NC in all liver cells such as Kupffer cells. These ligands are tagged with Atto-550 a fluorescent protein reporter for easier detection. The goal was to investigate cellular uptake of Cas9-gRNA nanocapsules using imaging after 24 hours and to determine the appropriate ratio for Lipofectamine-RNP positive control.
Imaging quantification of transfection efficiency with varying dosages of nanoparticles encapsulated with Cas9/sgRNA RNP on the liver-on-chip model system

In Vitro Liver-on-a-chip was used to examine the cellular uptake of CRISPR/Cas9 encapsulated nanoparticles. Two liver-targeted ligands were provided from the Gong Lab, RNP-NC attached to tri(GalNAc) and RNP-NC containing cell penetrating peptide (TAT). The triGalNAc is known to enhance RNP-NC target to hepatocytes, whereas TAT will enhance target and uptake of RNP-NC in all liver cells such as Kupffer cells. These ligands are tagged with Atto-550 a fluorescent protein reporter for easier detection. Liver microtissue with a monoculture of primary human hepatocytes (PHH) was used. Each well of the liver-on-a-chip typically is seeded with 6.0 × 10^5 hepatocytes 16 hours prior to the addition of RNP-NCs with flow of 1.0 µl/s through the liver 3D microtissues. Lipofectamine – RNP complex was prepared using Lipofectamine 2000 Transfection Reagent with 1:1 weight to weight ratio after optimization of transfection efficiency. The goal of the experiment was to examine transfection efficiency by testing two doses 2.4 ug and 24 ug RNP-NCs [tri(GalNAc), TAT] with the help of imaging. Transfection of 24µg RNP-NC shows higher uptake when compared to2.4µg RNP-NC.
Quantification of transfection efficiency by flow cytometry with varying dosages of nanoparticles encapsulated with Cas9/sgRNA RNP on liver-on-chip model system

In Vitro Liver-on-a-chip was used to examine the cellular uptake of CRISPR/Cas9 encapsulated nanoparticles. Two liver-targeted ligands were provided from the Gong Lab, RNP-NC attached to tri(GalNAc) and RNP-NC containing cell penetrating peptide (TAT). The triGalNAc is known to enhance RNP-NC target to hepatocytes, whereas TAT will enhance target and uptake of RNP- NC in all liver cells such as Kupffer cells. These ligands are tagged with Atto-550 a fluorescent protein reporter for easier detection. Liver microtissue with a monoculture of primary human hepatocytes (PHH) was used. Each well of the liver-on-a-chip typically is seeded with 6.0 × 10^5 hepatocytes 16 hours prior to the addition of RNP-NCs with flow of 1.0 µl/s through the liver 3D microtissues. Lipofectamine – RNP complex was prepared using Lipofectamine 2000 Transfection Reagent with 1:1 weight to weight ratio after optimization of transfection efficiency. The goal of the experiment was to quantify transfection efficiency by testing two doses 2.4 ug and 24 ug RNP-NCs [tri(GalNAc), TAT] using flow cytometry. Transfection of 24µg RNP-NC shows higher uptake when compared to2.4µg RNP-NC.