4 results for search term 'AAV'  in category Publication

Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo.

Publication 
Matched Fields: category : Publication name : Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. description : nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing
Newby GA, Liu DR, Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Amrani N, Chen Z, Gaston N, Wagh A, Xie J, Gao G, Wolfe SA, Khvorova A, Watts JK, Sontheimer EJ
PII: 7456042, PUBMED 38033325, PMC PMC10810193, DOI 10.1093/nar/gkad1125

ABSTRACT: Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this ...

CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity.

Publication  - [In Vitro] [Biological Systems] [Human]
Matched Fields: category : Publication grnaLabId : AAVS1_site_14 AAVS1_site_13 AAVS1_site_12 AAVS1_site_11 AAVS1_site_10 guideTargetLocus : AAVS1
Lazzarotto CR, Malinin NL, Li Y, Zhang R, Yang Y, Lee G, Cowley E, He Y, Lan X, Jividen K, Katta V, Kolmakova NG, Petersen CT, Qi Q, Strelcov E, Maragh S, Krenciute G, Ma J, Cheng Y, Tsai SQ
PII: 10.1038/s41587-020-0555-7, PUBMED 32541958, PMC PMC7652380, MID NIHMS1591991, DOI 10.1038/s41587-020-0555-7

ABSTRACT: Current methods can illuminate the genome-wide activity of CRISPR-Cas9 nucleases, but are not easily scalable to the throughput needed to fully understand the principles that govern Cas9 specificity. Here we describe 'circularization for high-throughput analysis of nuclease genome-wide effects by sequencing' (CHANGE-seq), a scalable, automatable tagmentation-based method for measuring the genome-wide activity of Cas9 in vitro. We applied CHANGE-seq to 110 single guide RNA targets across 13 thera ...

In vivo gene editing in dystrophic mouse muscle and muscle stem cells.

Publication 
Matched Fields: category : Publication description : Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats AAV-Dmd CRISPR treatment partially recovered muscle functional deficiencies and generated a pool of endogenously
Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ
PUBMED: 26721686, PMC PMC4924477, MID NIHMS791917, DOI 10.1126/science.aad5177

ABSTRACT: Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of c ...

Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins.

Publication  - [In Vivo] [Delivery Systems Initiative] [Mouse]
Matched Fields: category : Publication description : In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV
Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, Wang X, Nielsen SC, Newby GA, Randolph PB, Osborn MJ, Musunuru K, Palczewski K, Liu DR
PII: S0092-8674(21)01484-7, PUBMED 35021064, PMC PMC8809250, DOI 10.1016/j.cell.2021.12.021

ABSTRACT: Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and h ...

4 results for search term 'AAV'  in category Publication

Type Subtype Name Description Source View Associated..
Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity. Current methods can illuminate the genome-wide activity of CRISPR-Cas9 nucleases, but are not easily scalable to the throughput needed to fully understand the principles that govern Cas9 specificity. Here we describe 'circularization for high-throughput analysis of nuclease genome-wide effects by sequencing' (CHANGE-seq), a scalable, automatable tagmentation-based method for measuring the genome-wide activity of Cas9 in vitro. We applied CHANGE-seq to 110 single guide RNA targets across 13 therapeutically relevant loci in human primary T cells and identified 201,934 off-target sites, enabling the training of a machine learning model to predict off-target activity. Comparing matched genome-wide off-target, chromatin modification and accessibility, and transcriptional data, we found that cellular off-target activity was two to four times more likely to occur near active promoters, enhancers and transcribed regions. Finally, CHANGE-seq analysis of six targets across eight individual genomes revealed that human single-nucleotide variation had significant effects on activity at ~15.2% of off-target sites analyzed. CHANGE-seq is a simplified, sensitive and scalable approach to understanding the specificity of genome editors.
In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored the Dmd reading frame in myofibers, cardiomyocytes, and muscle stem cells after local or systemic delivery. AAV-Dmd CRISPR treatment partially recovered muscle functional deficiencies and generated a pool of endogenously corrected myogenic precursors in mdx mouse muscle.
Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.